156. New Antifungal Chromenyl Ketones and their Pentacyclic Dimers from Hypericum revolutum VAHL')

by Laurent A. Décosterd ${ }^{\text {a }}$), Helen Stoeckli-Evans ${ }^{\text {b }}$), Jerome D. Msonthic ${ }^{\text {c }}$, and Kurt Hostettmann ${ }^{\text {a }}$ * ${ }^{*}$
a) Institut de Pharmacognosie et Phytochimie, Ecole de Pharmacie, Université de Lausanne, 2, rue Vuillermet, CH-1005 Lausanne
b) Institut de Chimie, Université de Neuchâtel, 51, avenue de Bellevaux, CH-2000 Neuchâtel
c) Department of Chemistry, University of Malawi, Chancellor College, Zomba, Malawi

(30. VII. 87)

Two new $2 H$-1-benzopyranyl ketones 1 and 2 and three new pyrano[3,2-c:4,5,6- $\left.d^{\prime} e^{\prime}\right]$ di[1]benzopyrandiyl diketones $\mathbf{3}, \mathbf{4 a} / \mathbf{4} \mathbf{b}$, and $\mathbf{5}$ have been isolated from the leaves and twigs of Hypericum revolutum VaHl (Guttiferae). The structure of $\mathbf{3}$ (hyperevoline) was established by X-ray analysis as $1,1^{\prime}$-[1,13,13a,13b-tetrahydro- $5,8,10$-trihy-droxy-2,2,6,9,13,13-hexamethyl-2H,7a H-pyrano[3,2-c:4,5,6- $\left.d^{\prime} e^{\prime}\right]$ di[1]benzopyran-4,11-diyl]bis [2-methyl-1-propanone]. The structures of the isolated compounds were established by spectroscopic (UV, IR, EI-MS, ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}$-NMR) and chemical (acetylation and acidic dimerization) methods.

Introduction. - Hypericum revolutum Vahl (Guttiferae) is a shrub native to SouthEast Africa, growing at high altitude in open mountain grassland, along streams, and at the margins of evergreen forest. As early as 1943, it was demonstrated that extracts of a number of species of the genus Hypericum were active against Staphylococcus aureus [1], among them Hypericum perforatum [2]. There was some evidence that two compounds, hyperesin 1 and 2, exhibited activity against gram-positive microorganisms [3]. Other phytochemical investigations of the genus Hypericum for antibiotic [4] and antifungal

$1 R=H$
1a $R=A C$

2

R^{2}	R^{1}	R^{2}	R^{3}
$\mathbf{3}$	H	H	H
$\mathbf{3 a}$	Ac	H	H
$\mathbf{4 a}$	H	H	CH
$\mathbf{4 b}$	H	CH	H
$\mathbf{5}$	H	CH_{3}	CH_{3}

[^0][5][6] activities led to the isolation of hyperforin, a prenylated phloroglucine antibiotic [7][8]. In addition, antibiotics containing phoroglucinol and filicinic-acid moieties were characterized: uliginosin A and B [9][10], which display in vitro inhibitory activity against S. aureus and Trichophyton mentagraphytes, but lack in vivo activity against gram-positive infections in rats [11]. More recently, sarothralin [12] and sarothralen A and B [13] were shown to possess significant inhibitory activity against various microorganisms.

In the course of a chemical and biological screening of African plants, it was observed that the light petroleum ether extract of Hypericum revolutum was fungicidal against Cladosporium cucumerinum in a TLC bioassay. Two new 2 H -1-benzopyranyl ketones 1 and 2 were responsible for this activity. In addition, the new pyrano[3,2-c:4,5,6$\left.d^{\prime} e^{\prime}\right] \mathrm{di}[1]$ benzopyrandiyl diketones $\mathbf{3}, \mathbf{4 a} / \mathbf{4 b}$, and 5 were isolated from the plant and characterized. However, these compounds showed no antifungal activity.

Results. - Leaves and twigs of Hypericum revolutum collected in Malawi were extracted with light petroleum ether. This extract showed antifungal properties in a TLC bioassay using Cladosporium cucumerinum [14]. In order to isolate the active compounds, the extract was subjected to fractionation by various chromatographic techniques to afford an antifungal yellow oil. Analytical HPLC on RP18 using a photodiode-array detector showed the antifungal oil to be a mixture of two compounds with identical UV spectra. Semi-preparative HPLC on $R P 18\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}\right)$ yielded yellow crystals of 1 (EI-MS: M^{+-}at 276) and 2 as a yellow oil (EI-MS: M^{+-}at 290). The structures of $\mathbf{1}$ and $\mathbf{2}$ were established by their EI-MS, ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra and the data of the acetylation product $\mathbf{1 a}$.

[^1]The fast-running non-fungicidal fraction obtained by low-pressure liquid chromatography (see Exper. Part) was rechromatographed on silica gel to afford a crystalline product which was subjected to single-crystal X-ray analysis. Although the results of the analysis suggested structure 3 with a mol. wt. of 552 , the EI-MS showed the presence of peaks at $m / z 552,566$, and 580 with a difference of 14 amu in each case, indicating a mixture of 3 with higher homologues. Analytical HPLC using a photodiode-array detector showed the crystals to be a mixture of at least three compounds with identical UV

Fig. 1. Analytical HPLC of hyperevoline (3) and its higher homologues 4a/4b and 5 on RP18 with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 86: 14$. $\mathrm{H}_{3} \mathrm{PO}_{4}$ was added to the $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml} / \mathrm{l})$; photodiode-array detection at 254 nm ; flow-rate $1.5 \mathrm{ml} / \mathrm{min}$.
spectra (Fig. 1). Semi-preparative HPLC of a part of the crystalline mixture on LiChrosorb RPI8 with $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ allowed the isolation of compounds $\mathbf{3}, \mathbf{4 a} / \mathbf{4 b}$, and $\mathbf{5}$ whose EI-MS gave molecular ions at 552, 566, and 580, respectively. HPLC of another portion of the crystalline mixture on μ Bondapak RPI8 with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ gave an improved separation [16].

The main compound, hyperevoline (3), was the lowest homologue (pale yellow crystals from hexane $/ \mathrm{Et}_{2} \mathrm{O}$). Its ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and $\mathrm{EI}-\mathrm{MS}$ data were in accordance with the structure deduced from X-ray analysis (see Fig. 2 and Exper. Part). The molecule is composed of five fused rings ($\mathrm{A}-\mathrm{E}$). Benzene ring A has a flat boat conformation with atoms $\mathrm{C}(3 \mathrm{a}), \mathrm{C}(5), \mathrm{C}(6)$, and $\mathrm{C}(13 \mathrm{c})$ in a plane (planar to within $0.0008(30) \AA)$. Atoms $C(4)$ and $C(6 a)$ are displaced from this plane by $0.063(3)$ and $0.048(2) \AA$, respectively.

Fig. 2. View of hyperevoline (3) showing the atomic-numbering scheme and the vibrational ellipsoids (50% probability level)

Benzene ring B has a flat twist conformation with $C(7 b)$ and $C(10)$ lying on the 2-fold axis and $C(8), C(9), C(11)$, and $C(11 a)$ displaced by $0.052(3),-0.050(3), 0.043(3)$, and $-0.044(3) \AA$, respectively, from the best plane through all six atoms. Pyran rings C and E have sofa conformations. Atom $C(1)$ is displaced by $0.615(3) \AA$ from the best plane through the remaining five atoms in ring C (planar to within $0.038(3) \AA$), while $C(13)$ is displaced by 0.714 (3) \AA from the best plane through the remaining five atoms in ring E (planar to within $0.043(3) \AA$). Pyran ring D has a twist conformation with atoms $\mathrm{C}(6 \mathrm{a})$ and $\mathrm{C}(13 \mathrm{a})$ lying on the 2-fold axis and atoms $\mathrm{O}(7), \mathrm{C}(7 \mathrm{a}), \mathrm{C}(13 \mathrm{~b})$, and $\mathrm{C}(13 \mathrm{c})$ displaced by $-0.388(3), 0.343(3),-0.232(3)$, and $0.240(3) \AA$, respectively, from the best plane through all six atoms. There are two strong intramolecular H -bonds between $\mathrm{O}(5)$ and $O(16)$ and $O(10)$ and $O(22)$ and a weaker intermolecular H-bond linking $O(8)$ to $O(16)$ of a symmetry-related molecule (see Table 2 in Exper. Part).

The homologous compounds $\mathbf{4 a} / \mathbf{4 b}$ which were similarly crystallized as pale yellow crystals from hexane $/ \mathrm{Et}_{2} \mathrm{O}$ contain one sec-butyl and one isopropyl group in the acyl moieties at $\mathrm{C}(4)$ and $\mathrm{C}(11)$. As some signals of the ${ }^{13} \mathrm{C}$ - and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra are split, it seems reasonable to suggest that $\mathbf{4 a}$ and $\mathbf{4 b}$ are position isomers with the acyl chains interchangeable at $\mathrm{C}(4)$ and $\mathrm{C}(11)$. In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, the terminal CH_{3} group of the 2-methylbutyryl moiety is clearly visible as a split t centred at 0.90 ppm . Compound $\mathbf{5}$, the highest homologue, contains two sec-butyl groups in the acyl moieties. When compared with 3, 2 additional signals were observed at 27.1 ppm and 26.7 ppm in the ${ }^{13} \mathrm{C}$-NMR spectrum, assigned to the $2 \mathrm{CH}_{2}$ groups of the 2 -methylbutyryl moieties by DEPT experiments.

Although compounds $\mathbf{3 , 4 a / 4 b}$, and $\mathbf{5}$ can be considered as 'dimers' of $\mathbf{1}$ and $\mathbf{2}$, they are probably not artefacts formed during the isolation procedure because two-dimensional TLC analysis of the original petroleum-ether extract on silica gel showed the

1
Scheme

6

presence of a UV-active spot corresponding to the mixture of 3-5 and giving a similar red colour after treatment with Godin reagent [17]. The presence of the 3 pentacyclic dimers was also confirmed by TLC analysis of a petroleum-ether extract of another batch of Hypericum revolutum. However, previous observations [18] of the reactivity of 2 H -1-benzopyrans show that $\mathbf{1}$ is capable, under acidic conditions, to form the carbocation $\mathbf{6}$, resulting in various dimerization reactions. Indeed, we obtained the pentacyclic dimer 3 by acidic treatment of 1 (see Exper. Part). A possible mechanism for its formation is shown in the Scheme.

Discussion. - During our systematic screening studies of African medicinal plants for biologically active substances, a series of 5 new benzopyran derivatives (1-5) has been isolated from Hypericum revolutum VaHL. Compounds $\mathbf{1}$ and $\mathbf{2}$ are biogenetically related to the antibiotics uliginosin B and sarothalen B isolated from other species of the genus Hypericum, having the same 2 H -1-benzopyran moiety in their structure. The presence of a higher homologue of uliginosin B was mentioned by Parker and Johnson [9], but they were unable to remove the $M+14$ impurity. However, in the case of 1 and 2 , semi-preparative HPLC on $R P 18$ was found to be suited for the isolation of homologues which are generally difficult to separate. More details of the separation procedure are given elsewhere [16].

Various quantities of $\mathbf{1}$ and $\mathbf{2}$ have been tested against Cladosporium cucumerinum in a TLC bioassay [14]. The minimum quantity of both compounds required to show activity in the bioassay was $5 \mu \mathrm{~g}$. On acetylation of $\mathbf{1}$, its antifungal activity was lost.

Experimental Part

General. TLC: silica gel precoated Al sheets (Merck); toluene/AcOEt 93:7; detection: 254 mm and Godin reagent [17]. Prep. low-pressure liquid chromatography: Lobar ${ }^{\text {® }}$ silica-gel column ($40-63 \mu \mathrm{~m} ; 2.5 \mathrm{~cm} \times 27 \mathrm{~cm}$; Merck) equiped with a Duramat 80 pump (Chemie und Filter, Regensdorf). HPLC: LiChrosorb-RP18 column (7 $\mu \mathrm{m} ; 25 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ i.d.; Knauer); Spectra Physics 8700 pump; the chromatogram at 254 nm and the UV/VIS spectra were recorded with a photodiode-array detector HP 1040 A (Hewlett Packard). Semi-prep. HPLC: μ Bondapak-C18 column ($30 \mathrm{~cm} \times 7.8 \mathrm{~mm}$ i.d.; Waters); Waters 6000 A pump coupled with a Waters solvent-delivery system (automatic gradient controller); detection at 254 nm with a Pye Unicam LC-UV detector. M.p.: Mettler FP 80/82 hot stage apparatus; uncorrected. UV spectra: Perkin-Elmer Lambda 3 spectrophotometer. IR spectra: Perkin Elmer $681 .{ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}$-NMR spectra: Varian VXR 200 equipped with a switchable $5-\mathrm{mm}$ probe at 200 MHz and 50.1 MHz , resp.; CDCl_{3} solns.; chemical shifts in δ (ppm) relative to TMS. EI-MS: Nermag $R 1030$ spectrometer.

Plant Material. Twigs and leaves of Hypericum revolutum were collected on Zomba Plateau, Malawi, in September 1984. A voucher specimen is deposited at the Herbarium, Chancellor College, University of Malawi, Zomba.

Extraction and Isolation. The powdered twigs and leaves (80 g) were extracted at r.t. with light petroleum ether: 7.9 g of extract. A $4-\mathrm{g}$ portion was fractionated by flash chromatography on silica gel ($63-200 \mu \mathrm{~m}$; Merck) with a gradient of toluene and $\operatorname{AcOEt}(99: 1 \rightarrow 95: 5$; flow rate $30 \mathrm{ml} / \mathrm{min})$ to afford 970 mg of material containing the antifungal compounds. Repetitive chromatography of this antifungal fraction on a Lobar ${ }^{24}$ silica-gel column with CHCl_{3} /hexane/ $\mathrm{MeOH} 80: 8: 0.3$ yielded 210 mg of $\mathbf{1 / 2}$. A soln. of 120 mg of $\mathbf{1 / 2}$ in 2 ml of MeOH was subjected to repetitive semi-prep. HPLC on μ Bondapak C18 with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 63: 17$ to give 53 mg of 1 (yellow crystals from hexane) and 37 mg of 2 (yellow oil), after filtration on silica gel ($63-200 \mu \mathrm{~m}$; Merck) with CHCl_{3} in order to remove the oxidation products formed on evaporation of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$.

The fast running non-fungicidal fraction (580 mg) obtained from the repetitive Lobar ${ }^{(10)}$ low-pressure chromatography was injected onto a silica-gel column ($63-200 \mu \mathrm{~m}$; Merck) with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane 95 :5 to afford 235 mg of $\mathbf{3 / 4 a} / \mathbf{4 b} / 5$. After crystallisation from hexane $/ \mathrm{Et}_{2} \mathrm{O} 1: 1,158 \mathrm{mg}$ of pale yellow crystals were obtained. A $36-\mathrm{mg}$
portion in 0.4 ml of CHCl_{3} and 1 ml of $\mathrm{CH}_{3} \mathrm{CN}$ was separated by repetitive semi-prep. HPLC (injection volume 250 μ) on a LiChrosorb-RP18 ($7 \mu \mathrm{~m}$) column ($25 \mathrm{~cm} \times 16 \mathrm{~mm}$; Knauer) with $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 95: 5$ to afford 20 mg of 3 , 12 mg of $4 \mathrm{a} / 4 \mathrm{~b}$, and 3 mg of 5 (peak tailing). A better separation was obtained by semi-prep. HPLC (injection volume $125 \mu \mathrm{l}$) on a μ Bondapak-C18 column ($30 \mathrm{~cm} \times 7.8 \mathrm{~mm}$ i.d.; Waters) with $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O} 82: 18$ using 70 ing of $\mathbf{3} / \mathbf{4 a} / \mathbf{4 b} / \mathbf{5}$ in 0.8 ml of CHCl_{3} and 2 ml of $\mathrm{CH}_{3} \mathrm{CN}: 41 \mathrm{mg}$ of $\mathbf{3}, 23 \mathrm{mg}$ of $\mathbf{4 a} / \mathbf{4 b}$, and 5 mg of $\mathbf{5}$.

1-(5,7-Dihydroxy-2,2,6-trimethyl-2H-1-benzopyran-8-yl)-2-methyl-1-propanone (1). Yellow prisms. M.p. 7981. $\mathrm{TLC}\left(\mathrm{SiO}_{2}\right.$, toluene/AcOEt 93:7): $R_{\mathrm{f}} 0.41$; grey-brown with Godin reagent. UV (MeOH): 270 (sh), 285 (22400). UV ($\mathrm{MeOH} / \mathrm{AlCl}_{3}$): unchanged. UV ($\mathrm{MeOH} / \mathrm{AlCl}_{3} / \mathrm{HCl}$): unchanged. UV ($\mathrm{MeOH} / \mathrm{NaOMe}$): 292, 335. UV ($\mathrm{MeOH} / \mathrm{NaOAc}$): 292, 335. UV ($\mathrm{MeOH} / \mathrm{NaOAc} / \mathrm{H}_{3} \mathrm{BO}_{3}$): 282, 355. IR (KBr): 3380, 2960, 1640, 1590, 1570, 1220, $1150,1130,910,840,730,710 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.14(s, \mathrm{OH}-\mathrm{C}(7)) ; 6.56(d, J=10, \mathrm{H}-\mathrm{C}(4)) ; 5.44$ $(d, J=10, \mathrm{H}-\mathrm{C}(3)) ; 5.42(\mathrm{~s}, \mathrm{OH}-\mathrm{C}(5)) ; 3.87$ (sept., $\left.J=6.5,\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 2.03\left(s, \mathrm{CH}_{3}-\mathrm{C}(6)\right) ; 1.47$ (s, 2 $\left.\mathrm{CH}_{3}-\mathrm{C}(2)\right) ; 1.18\left(d, J=6.5,\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 210.7(\mathrm{C}=\mathrm{O}) ; 163.8(\mathrm{C}(5)) ; 155.4(\mathrm{C}(7))$; 154.1 ($\mathrm{C}(8 \mathrm{a})) ; 124.9(\mathrm{C}(4)) ; 116.5(\mathrm{C}(3)) ; 105.1(\mathrm{C}(8)) ; 102.3,101.3(\mathrm{C}(4 \mathrm{a}), \mathrm{C}(6)) ; 77.7(\mathrm{C}(2)) ; 39.3\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$; $27.7\left(2 \mathrm{CH}_{3}-\mathrm{C}(2)\right) ; 19.5\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 7.1\left(\mathrm{CH}_{3}-\mathrm{C}(6)\right)$. EI-MS: $276\left(\mathrm{M}^{+\cdot}\right), 261\left(100, M^{+\cdot}-\mathrm{CH}_{3}\right), 243,233,191$.

1-(5,7-Dihydroxy-2,2,6-trimethyl-2H-1-benzopyran-8-yl)-2-methyl-1-butanone (2). Yellow oil. TLC (SiO_{2}, toluene/AcOEt 93:7): $R_{\mathrm{f}} 0.41$. UV data: as for 1 . ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.18(s, \mathrm{OH}-\mathrm{C}(7)) ; 6.56(d$, $J=10, \mathrm{H}-\mathrm{C}(4)) ; 5.45(d, J=10, \mathrm{H}-\mathrm{C}(3)) ; 5.39(s, \mathrm{OH}-\mathrm{C}(5)) ; 3.77\left(\right.$ sext $\left.., J=6.5, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; 2.04(s$, $\left.\mathrm{CH}_{3}-\mathrm{C}(6)\right) ; 1.85\left(m, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; 1.48,1.47\left(2 s, 2 \mathrm{CH}_{3}-\mathrm{C}(2)\right) ; 1.44\left(m, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; 1.16$ $\left(d, J=6.5, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) ; 0.9\left(d d, J=7.5,7.5, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 210.9\right.\right.$ $(\mathrm{C}=\mathrm{O}) ; 163.7(\mathrm{C}(5)) ; 155.3(\mathrm{C}(7)) ; 154.2(\mathrm{C}(8 \mathrm{a})) ; 125.0(\mathrm{C}(4)) ; 116.5(\mathrm{C}(3)) ; 105.6(\mathrm{C}(8)) ; 102.2,101.4(\mathrm{C}(4 \mathrm{a})$, $\mathrm{C}(6)) ; 77.7 \quad(\mathrm{C}(2)) ; 46.1 \quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; 27.7 \quad\left(2 \quad \mathrm{CH}_{3}-\mathrm{C}(2)\right) ; 26.9 \quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; 16.9$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; 12.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; 7.1\left(\mathrm{CH}_{3}-\mathrm{C}(6)\right)$. EI-MS: $290\left(M^{+}\right), 275\left(100, M^{+\cdot}-\mathrm{CH}_{3}\right), 257$, 233, 191.

1,1'- $[1,13,13 a, 13 b-T e t r a h y d r o-5,8,10-$ trihydroxy-2,2,6,9,13,13-hexamethyl- $2 \mathrm{H}, 7 a \mathrm{H}-$ pyrano $[3,2-\mathrm{c}: 4,5,6-$ $\mathrm{d}^{\prime} \mathrm{e}^{\prime}$]di/1]benzopyran-4,11-diyl]bis[2-methyl-1-propanone] $(=$ Hyperevoline; 3). Pale yellow prism from hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 1:1. M.p. 206-210 ${ }^{\circ}$. TLC $\left(\mathrm{SiO}_{2}\right.$, toluene/AcOEt 93:7): $R_{\mathrm{f}} 0.51$, red with Godin reagent. UV (MeOH):226 (33000), 295 (36200). UV ($\mathrm{MeOH} / \mathrm{AlCl}_{3}$): unchanged. UV $\left(\mathrm{MeOH} / \mathrm{AlCl}_{3} / \mathrm{HCl}\right)$: unchanged. UV ($\mathrm{MeOH} /$ NaOMe): 305 (sh), 330 . UV ($\mathrm{MeOH} / \mathrm{NaOAc}$): 300 (sh), 330 . UV ($\mathrm{MeOH} / \mathrm{NaOAc} / \mathrm{H}_{3} \mathrm{BO}_{3}$): 295, $330 . \mathrm{IR}(\mathrm{KBr}):$ $3400,2960,1610,1290,1250,1200,1130,970,870 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.26,13.83(2 s, \mathrm{OH}-\mathrm{C}(5)$, $\mathrm{OH}-\mathrm{C}(10)) ; 6.82(s, \mathrm{OH}-\mathrm{C}(8)) ; 4.68(d, J=5, \mathrm{H}-\mathrm{C}(7 \mathrm{a})) ; 3.82\left(m, 2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 2.58(d d d, J=12,4.5,3.5$, $\mathrm{H}-\mathrm{C}(13 \mathrm{~b})) ; 2.16(d d, J=5,4.5, \mathrm{H}-\mathrm{C}(13 \mathrm{a})) ; 2.10,2.08\left(2 \mathrm{~s}, \mathrm{CH}_{3}-\mathrm{C}(6), \mathrm{CH}_{3}-\mathrm{C}(9)\right) ; 2.05(m, 1 \mathrm{H}-\mathrm{C}(1)) ; 1.88$ (dd, $J=12,12,1 \mathrm{H}-\mathrm{C}(1)) ; 1.57,1.53\left(2 s, 2 \mathrm{CH}_{3}-\mathrm{C}(13)\right) ; 1.46\left(s, 2 \mathrm{CH}_{3}-\mathrm{C}(2)\right)$; $\mathrm{I} .18\left(4 d, J=7.2(\mathrm{CH})_{2} \mathrm{CH}\right)$. ${ }^{13} \mathrm{C}$-NMR ($50.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 210.9, $210.2(2 \mathrm{C}=\mathrm{O}) ; 166.0,162.6,160(\mathrm{C}(5), \mathrm{C}(8), \mathrm{C}(10)) ; 158.0,154.1,153.4$, (C(3a), C(6a), C(11a)); 106.4, 105.7, 105.3, 104.6, 100.4, $97.8(\mathrm{C}(4), \mathrm{C}(6), \mathrm{C}(7 \mathrm{~b}), \mathrm{C}(9), \mathrm{C}(11), \mathrm{C}(13 \mathrm{c})) ; 78.4,77.4$ $(\mathrm{C}(2), \mathrm{C}(13)) ; 70.3(\mathrm{C}(7 \mathrm{a})) ; 47.5(\mathrm{C}(13 \mathrm{~b})) ; 42.2(\mathrm{C}(1)) ; 39.6,39.5\left(2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 30.1\left(\mathrm{CH}_{3}-\mathrm{C}(13)\right) ; 28.0,26.8$ (2 $\left.\mathrm{CH}_{3}-\mathrm{C}(2)\right) ; 24.4(\mathrm{C}(13 \mathrm{a})) ; 20.3\left(\mathrm{CH}_{3}-\mathrm{C}(13)\right)$; 19.7, 19.6, 19.4, $19.3\left(2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 7.4,7.3\left(\mathrm{CH}_{3}-\mathrm{C}(6)\right.$, $\left.\mathrm{CH}_{3}-\mathrm{C}(9)\right)$. EI-MS: $552\left(\mathrm{M}^{+`}\right), 537,277$ (100), 261, 243, 233, 205.
X-Ray Analysis of 3. Suitable crystals were grown from hexane $/ \mathrm{Et}_{2} \mathrm{O}$ 1:1. Crystal data: $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{8}, M_{\mathrm{r}}=552$, space group $P 2_{1} / n, a=12.408(1), b=18.151(1), c=13.207(1) \AA, \beta=100.73(1)^{\circ}, V=2922.4 \AA^{3}, F(000)=1184$, $Z=4, D_{\mathrm{x}}=1.254 \mathrm{gcm}^{-3}, \mathrm{Mo} K \alpha, \lambda=0.71073 \AA, \mu=0.53 \mathrm{~cm}^{-1}$. A crystal of dimensions $0.27 \times 0.27 \times 0.57 \mathrm{~mm}$ was used for data collection. Preliminary Weissenberg and precession photographs indicated the crystals to be monoclinic, space group $P 2_{1} / n$. Intensity data with index limits $h-14$ to $14, k 0$ to 21 , and $l 0$ to 15 with $\theta_{\max }=25^{\circ}$ were measured on a Stoe Siemens AED2 four-circle diffractometer (graphite-monochromated MoK α radiation) using the ω / θ scan mode. There was no significant intensity variation for 5 standard reflections measured every h. Of 4945 unique reflections measured, 3306 were considered observed ($F_{0}>6 \sigma\left(F_{0}\right)$). Cell parameters from $\pm \omega$ values of 14 reflections and their equivalents in the range $30^{\circ}<2 \theta<40^{\circ}$. No absorption or extinction corrections applied. The structure was solved by direct methods using the SHELX-76 system [19] which was used for all further calculations. In the final cycles of least-squares refinement, the majority of H -atoms located from difference maps were included and refined isotropically. The protons $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$ were included in idealized positions and treated as 'rigid groups' as the C -atoms undergo considerable thermal motion, probably due to a small degree of rotational disorder ($\mathrm{C}-\mathrm{H}=1.08 \AA, \mathrm{H}-\mathrm{C}-\mathrm{H}=109.5^{\circ}$ with an overall $U_{\text {iso }}$ refined value 0.153). Weighted anisotropic blocked ($374+114$ parameters) full-matrix least-squares refinement for 3306 reflections converged at $R=0.061$, $R_{\mathrm{w}}=0.071 ; w^{-1}=\sigma^{2}\left(F_{\mathrm{o}}\right)+0.01323\left(F_{\mathrm{o}}\right)^{2}$. Average parameters shift/e.s.d. <0.1. Heights in final difference map, $\rho_{\max }=0.77 \rho_{\min }=-0.33 \mathrm{e} \AA^{-3}$. The $\rho_{\max }$ was observed in the region of the $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$ groups and indicated (from distances and angles) a small degree of rotational disorder of these groups; no attempt was made to include this disorder in the model. Atomic scattering factors were taken from 'International Tables for X-Ray Crystallography'

Table 1. Final Positional Parameters and Equivalent Isotropic Thermal Parameters ($\times 10^{4}$) for $\mathbf{3}$ with e.s.d.'s in Parentheses. $U_{\mathrm{eq}}=1 / 3 \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*}\left(\bar{a}_{i} \ddot{a}_{j}\right)$.

Atom	x / a	y / b	c / z	$U_{\text {eq }}\left(\AA^{2}\right)$	Atom	x / a	y / b	c / z	$U_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{C}(1)$	$5147(2)$	$2628(2)$	$907(2)$	$376(7)$	$\mathrm{C}(13)$	$6169(3)$	$4206(1)$	$2263(2)$	$388(8)$
$\mathrm{C}(2)$	$5384(2)$	$1834(2)$	$666(2)$	$373(7)$	$\mathrm{C}(13 \mathrm{a})$	$5911(2)$	$3947(1)$	$1140(2)$	$314(7)$
$\mathrm{O}(3)$	$5818(2)$	$1806(1)$	$-289(2)$	$474(6)$	$\mathrm{C}(13 \mathrm{~b})$	$6159(2)$	$3111(1)$	$1013(2)$	$316(7)$
$\mathrm{C}(3 \mathrm{a})$	$6538(2)$	$2330(1)$	$-475(2)$	$360(7)$	$\mathrm{C}(13 \mathrm{c})$	$6718(2)$	$2971(1)$	$108(2)$	$327(7)$
$\mathrm{C}(4)$	$7108(3)$	$2195(2)$	$-1299(2)$	$408(8)$	$\mathrm{C}(14)$	$4334(3)$	$1385(2)$	$426(3)$	$516(9)$
$\mathrm{C}(5)$	$7931(3)$	$2711(2)$	$-1429(2)$	$406(8)$	$\mathrm{C}(15)$	$6213(3)$	$1471(2)$	$1496(3)$	$553(10)$
$\mathrm{O}(5)$	$8542(2)$	$2616(1)$	$-2165(2)$	$606(7)$	$\mathrm{C}(16)$	$6835(3)$	$1590(2)$	$-2041(3)$	$530(10)$
$\mathrm{C}(6)$	$8122(2)$	$3356(2)$	$-855(2)$	$395(8)$	$\mathrm{O}(16)$	$7456(2)$	$1468(1)$	$-2666(2)$	$620(7)$
$\mathrm{C}(6 \mathrm{a})$	$7481(2)$	$3480(1)$	$-124(2)$	$328(7)$	$\mathrm{C}(17)$	$5756(3)$	$1140(2)$	$-2177(3)$	$649(11)$
$\mathrm{O}(7)$	$7577(2)$	$4129(1)$	$410(2)$	$339(5)$	$\mathrm{C}(18)$	$5271(4)$	$1027(3)$	$-3299(4)$	$800(14)$
$\mathrm{C}(7 \mathrm{a})$	$6492(2)$	$4422(1)$	$454(2)$	$292(6)$	$\mathrm{C}(19)$	$6014(6)$	$420(3)$	$-1630(5)$	$1058(20)$
$\mathrm{C}(7 \mathrm{~b})$	$6606(2)$	$5217(1)$	$809(2)$	$324(7)$	$\mathrm{C}(20)$	$8960(3)$	$3912(2)$	$-1068(3)$	$567(10)$
$\mathrm{C}(8)$	$7077(2)$	$5740(2)$	$230(2)$	$358(7)$	$\mathrm{C}(21)$	$7860(3)$	$7011(2)$	$31(3)$	$557(10)$
$\mathrm{O}(8)$	$7367(2)$	$5491(1)$	$-646(2)$	$512(6)$	$\mathrm{C}(22)$	$5675(3)$	$6512(2)$	$2762(3)$	$491(9)$
$\mathrm{C}(9)$	$7231(3)$	$6473(2)$	$547(2)$	$384(7)$	$\mathrm{O}(22)$	$5741(3)$	$7193(1)$	$2929(2)$	$862(10)$
$\mathrm{C}(10)$	$6745(3)$	$6695(2)$	$1365(2)$	$383(8)$	$\mathrm{C}(23)$	$5076(3)$	$6072(2)$	$3439(3)$	$587(10)$
$\mathrm{O}(10)$	$6832(2)$	$7419(1)$	$1602(2)$	$575(7)$	$\mathrm{C}(24)$	$4186(7)$	$6519(4)$	$3792(7)$	$1579(34)$
$\mathrm{C}(11)$	$6192(2)$	$6212(2)$	$1934(2)$	$363(7)$	$\mathrm{C}(25)$	$5887(7)$	$5811(4)$	$4378(5)$	$1173(23)$
$\mathrm{C}(1 \mathrm{a})$	$6202(2)$	$5451(1)$	$1654(2)$	$310(7)$	$\mathrm{C}(26)$	$5494(4)$	$3813(2)$	$2931(3)$	$654(11)$
$\mathrm{O}(12)$	$5786(2)$	$4970(1)$	$2261(2)$	$427(6)$	$\mathrm{C}(27)$	$7394(3)$	$4202(2)$	$2742(2)$	$470(9)$

[20]. Final positional and equivalent thermal parameters are given in Table 1, bond distances and angles in Table 2. The numbering scheme is apparent from Fig. 2 prepared using ORTEP [21]. Supplementary material is available from H.St.-E.

2-Methyl-1-(1,13,13a,13b-tetrahydro-5,8,10-trihydroxy-4-isobutyryl-2,2,6,9,13,12-hexamethyl- $2 \mathrm{H}, 7 \mathrm{~F} \mathbf{H - p y}$ -rano(3,2-c:4,5,6-d'e'fdi[1]benzopyran-11-yl)-1-butanone/2-Methyl-1-(1.13,13a,13b-tetrahydro-5,8,10-trihydroxy-Il-isobutyryl-2,2,6,9,13,13-hexamethyl- $2 \mathrm{H}, 7 \mathrm{H} \mathrm{H}$-pyrano/3,2-c:4,5,6-d'e' Jdi/l]benzopyran-4-yl)-1-butanone (4a/ 4b). Pale yellow prisms from hexane/Et O 1:1. M.p. 193-197.$~ \mathrm{TLC}\left(\mathrm{SiO}_{2}\right.$, toluene/AcOEt 93:7): $\boldsymbol{R}_{\mathrm{f}} 0.51$. UV data: as for 3. ${ }^{1} \mathrm{H}$-NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): 14.31,14.25,13.84,13.82(\mathrm{OH}-\mathrm{C}(5), \mathrm{OH}-\mathrm{C}(10)) ; 6.82,6.81(\mathrm{H}-\mathrm{C}(8))$; 4.70, 4.68 (split $d, \mathrm{H}-\mathrm{C}(7 \mathrm{a})$); 3.83, $3.7\left(m,\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; 2.58(\mathrm{~m}, \mathrm{H}-\mathrm{C}(13 \mathrm{~b})) ; 2.17(m$, $\mathrm{H}-\mathrm{C}(13 \mathrm{a})$); 2.11, 2.08 ($2 \mathrm{~s}, \mathrm{CH}_{3}-\mathrm{C}(6), \mathrm{CH}_{3} \mathrm{C}(9)$); 2.05 ($m, \mathrm{H}-\mathrm{C}(1)$); $2.0-1.6$ (br. $m, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}(1), 1 \mathrm{H}$ of $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; 1.57,1.53\left(2 \mathrm{~s}, 2 \mathrm{CH}_{3} \mathrm{C}(13)\right) ; 1.46\left(\mathrm{~s}, 2 \mathrm{CH}_{3}-\mathrm{C}(2)\right) ; 1.42\left(\mathrm{~m}, 1 \mathrm{H}\right.$ of CH $\left.3 \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; 1.2(\mathrm{~m}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; 0.9\left(\mathrm{~m}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(50.1 \mathrm{MHz}): 210.9,210.2(2 \mathrm{C}=\mathrm{O}) ; 166.1$, $162.6,160.0$ (C(5), C(8), C(10)); 158.0, 154.1, 153.5 (C(3a), C(6a), C(11a)); 106.5, 105.8, 105.4, 104.7, 100.6, 97.8 $(\mathrm{C}(4), \mathrm{C}(6), \mathrm{C}(7 \mathrm{~b}), \mathrm{C}(9), \mathrm{C}(11), \mathrm{C}(13 \mathrm{c})) ; 78.6,77.4(\mathrm{C}(2), \mathrm{C}(13)) ; 70.4(\mathrm{C}(7 \mathrm{a})) ; 47.6(\mathrm{C}(13 \mathrm{~b})) ; 46.3$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; \quad 42.4 \quad(\mathrm{C}(1)) ; \quad 39.6 \quad\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; \quad 30.1 \quad\left(\mathrm{CH}_{3}-\mathrm{C}(13)\right) ; \quad 28.2 \quad\left(\mathrm{CH}_{3}-\mathrm{C}(2)\right) ; \quad 27.0$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; 26.8\left(\mathrm{CH}_{3}-\mathrm{C}(2)\right) ; 24.4(\mathrm{C}(13 \mathrm{a})) ; 20.4\left(\mathrm{CH}_{3}-\mathrm{C}(13)\right) ; 19.7$, $19.3\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 16.8,17.2$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; 12.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; 7.5,7.3\left(\mathrm{CH}_{3} \mathrm{C}(6), \mathrm{CH}-\mathrm{C}(9)\right)$. EI-MS: $566\left(M^{+}\right), 551,291,277$ (100), 261, 233, 205.

1,1'-[1,13,13a,13b-Tetrahydro-5,8,10-trihydroxy-2,2,6,9,13,13-hexamethyl-2H,7aH-pyrano/3,2-c:4,5,6-d'e'] di[1]benzopyran-4,11-diyl]bis[2-methyl-I-butanone] (5). Pale yellow crystals from hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 1:1. M.p. 170 173°. TLC $\left(\mathrm{SiO}_{2}\right.$, toluene/AcOEt 93:7): $R_{\mathrm{f}} 0.51$. UV data: as for $3 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): 14.33,13.87(2 s$, $\mathrm{OH}-\mathrm{C}(5), \mathrm{OH}-\mathrm{C}(10)) ; 6.84(s, \mathrm{OH}-\mathrm{C}(8)) ; 4.69(d, J=5, \mathrm{H}-\mathrm{C}(7 \mathrm{a})) ; 3.71\left(m, 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; 2.58(d d d$, $\mathrm{H}-\mathrm{C}(13 \mathrm{~b})$) ; 2.17 ($\mathrm{m}, \mathrm{H}-\mathrm{C}(13 \mathrm{a})$); 2.11, 2.10 ($2 \mathrm{~s}, \mathrm{CH}_{3}-\mathrm{C}(6), \mathrm{CH}_{3}-\mathrm{C}(9)$); 2.05-1.78 (br. m); 1.58, 1.53 ($2 \mathrm{~s}, 2$ $\left.\mathrm{CH}_{3}-\mathrm{C}(13)\right) ; 1.46,1.44\left(2 s, 2 \mathrm{CH}_{3}-\mathrm{C}(2)\right) ; 1.42-1.35(m) ; 1.16,1.15\left(2 d, J=6.8,2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; 0.89(m, 2$ $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50.1 \mathrm{MHz}\right): 210.8,210.1(2 \mathrm{C}=\mathrm{O}) ; 166.0,162.5,159.9(\mathrm{C}(5), \mathrm{C}(8), \mathrm{C}(10))$; $158.0,154.2,153.5$ (C(3a), C(6a), C(11a)); 105.8, 105.3, 105.1, 104.5, 100.5, $97.8(\mathrm{C}(4), \mathrm{C}(6), \mathrm{C}(7 \mathrm{~b}), \mathrm{C}(9), \mathrm{C}(11)$, $\mathrm{C}(13 \mathrm{c})) ; 78.4,77.4(\mathrm{C}(2), \mathrm{C}(13)) ; 70.3(\mathrm{C}(7 \mathrm{a})) ; 47.5(\mathrm{C}(13 \mathrm{~b})) ; 46.3,46.2\left(2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; 42.3(\mathrm{C}(1)) ; 30.1$ $\left(\mathrm{CH}_{3}-\mathrm{C}(13)\right) ; 28.1\left(\mathrm{CH}_{3}-\mathrm{C}(2)\right) ; 27.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; 26.8\left(\mathrm{CH}_{3}-\mathrm{C}(2)\right) ; 26.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; 24.4$ (C(13a)); $20.3\left(\mathrm{CH}_{3}-\mathrm{C}(13)\right) ; 17.2,16.7\left(2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; 12.0\left(2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; 7.5,7.3\left(\mathrm{CH}_{3}-\mathrm{C}(6)\right.$, $\left.\mathrm{CH}_{3}-\mathrm{C}(9)\right)$. EI-MS: $580\left(\mathrm{M}^{++}\right), 565,291(100), 275,233,205$.

Table 2. Bond Distances (\AA) and Angles (${ }^{\circ}$) for 3

$\mathrm{C}(1)-\mathrm{C}(2)$	$1.516(4)$	$\mathrm{C}(7 \mathrm{a})-\mathrm{C}(7 \mathrm{~b})$	$1.516(4)$	$\mathrm{C}(13 \mathrm{a})-\mathrm{C}(13 \mathrm{~b})$	$1.563(4)$
$\mathrm{C}(1)-\mathrm{C}(13 \mathrm{~b})$	$1.517(4)$	$\mathrm{C}(7 \mathrm{a})-\mathrm{C}(13 \mathrm{a})$	$1.525(4)$	$\mathrm{C}(13 \mathrm{~b})-\mathrm{C}(13 \mathrm{c})$	$1.511(4)$
$\mathrm{C}(2)-\mathrm{O}(3)$	$1.462(4)$	$\mathrm{C}(7 \mathrm{~b})-\mathrm{C}(8)$	$1.413(4)$	$\mathrm{C}(16)-\mathrm{O}(16)$	$1.250(5)$
$\mathrm{C}(2)-\mathrm{C}(14)$	$1.518(4)$	$\mathrm{C}(7 \mathrm{~b})-\mathrm{C}(11 \mathrm{a})$	$1.374(4)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.550(6)$
$\mathrm{C}(2)-\mathrm{C}(15)$	$1.508(4)$	$\mathrm{C}(8)-\mathrm{O}(8)$	$1.351(4)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.505(6)$
$\mathrm{O}(3)-\mathrm{C}(3 \mathrm{a})$	$1.358(4)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.397(4)$	$\mathrm{C}(17)-\mathrm{C}(19)$	$1.500(7)$
$\mathrm{C}(3 \mathrm{a})-\mathrm{C}(4)$	$1.425(5)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.391(5)$	$\mathrm{C}(22)-\mathrm{O}(22)$	$1.256(4)$
$\mathrm{C}(3 \mathrm{a})-\mathrm{C}(13 \mathrm{c})$	$1.390(4)$	$\mathrm{C}(9)-\mathrm{C}(21)$	$1.492(5)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.497(6)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.419(4)$	$\mathrm{C}(10)-\mathrm{O}(10)$	$1.349(4)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.513(10)$
$\mathrm{C}(4)-\mathrm{C}(16)$	$1.468(4)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.413(4)$	$\mathrm{C}(23)-\mathrm{C}(25)$	$1.520(7)$
$\mathrm{C}(5)-\mathrm{O}(5)$	$1.350(4)$	$\mathrm{C}(11)-\mathrm{C}(11 \mathrm{a})$	$1.430(4)$	$\mathrm{H}(05) \ldots \mathrm{O}(16)$	$1.67(4)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.392(4)$	$\mathrm{C}(11)-\mathrm{C}(22)$	$1.471(5)$	$\mathrm{O}(5) \ldots \mathrm{O}(16)$	$2.503(3)$
$\mathrm{C}(6)-\mathrm{C}(6 a)$	$1.379(4)$	$\mathrm{C}(11 \mathrm{a})-\mathrm{O}(12)$	$1.351(4)$	$\mathrm{H}(010) \ldots(022)$	$1.57(5)$
$\mathrm{C}(6)-\mathrm{C}(20)$	$1.512(5)$	$\mathrm{O}(12)-\mathrm{C}(13)$	$1.465(3)$	$\mathrm{O}(10) \ldots \mathrm{O}(22)$	$2.441(4)$
$\mathrm{C}(6 \mathrm{a})-\mathrm{C}(13 \mathrm{c})$	$1.398(4)$	$\mathrm{C}(13)-\mathrm{C}(13 \mathrm{a})$	$1.533(4)$	$\left.\mathrm{H}(08) \ldots \mathrm{O}(16)^{\mathrm{a}}\right)$	$2.064(4)$
$\mathrm{C}(6 \mathrm{a})-\mathrm{O}(7)$	$1.367(3)$	$\mathrm{C}(13)-\mathrm{C}(26)$	$1.505(5)$	$\left.\mathrm{O}(8) \ldots \mathrm{O}(16)^{\mathrm{a}}\right)$	$2.889(3)$

$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(13 \mathrm{~b})$	112.4(2)	$\mathrm{C}(7 \mathrm{~b})-\mathrm{C}(7 \mathrm{a})-\mathrm{C}(13 \mathrm{a})$	112.4(2)	$\mathrm{C}(7 \mathrm{a})-\mathrm{C}(13 \mathrm{a})-\mathrm{C}(13)$	111.4(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	109.3(2)	$\mathrm{C}(7 \mathrm{a})-\mathrm{C}(7 \mathrm{~b})-\mathrm{C}(8)$	119.8(3)	$\mathrm{C}(7 \mathrm{a})-\mathrm{C}(13 \mathrm{a})-\mathrm{C}(13 \mathrm{~b})$	111.1(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(14)$	111.2(3)	$\mathrm{C}(7 \mathrm{a})-\mathrm{C}(7 \mathrm{~b})-\mathrm{C}(11 \mathrm{a})$	121.3(3)	$\mathrm{C}(13)-\mathrm{C}(13 \mathrm{a})-\mathrm{C}(13 \mathrm{~b})$	113.0(2)
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(14)$	104.(2)	$\mathrm{C}(8)-\mathrm{C}(7 \mathrm{~b})-\mathrm{C}(11 \mathrm{a})$	118.8(2)	$\mathrm{C}(1)-\mathrm{C}(13 \mathrm{~b})-\mathrm{C}(13 \mathrm{a})$	113.3(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(15)$	113.3(2)	$\mathrm{C}(7 \mathrm{~b})-\mathrm{C}(8)-\mathrm{O}(8)$	116.1(2)	$\mathrm{C}(1)-\mathrm{C}(13 \mathrm{~b})-\mathrm{C}(13 \mathrm{c})$	108.8(2)
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(15)$	107.5(3)	$\mathrm{C}(7 \mathrm{~b})-\mathrm{C}(8)-\mathrm{C}(9)$	121.7(3)	$\mathrm{C}(13 \mathrm{a})-\mathrm{C}(13 \mathrm{~b})-\mathrm{C}(13 \mathrm{c})$	112.2(2)
$\mathrm{C}(14)-\mathrm{C}(2)-\mathrm{C}(15)$	111.1(3)	$\mathrm{O}(8)-\mathrm{C}(8)-\mathrm{C}(9)$	122.2(3)	$\mathrm{C}(3 \mathrm{a})-\mathrm{C}(13 \mathrm{c})-\mathrm{C}(6 \mathrm{a})$	118.5(3)
$\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{C}(3 \mathrm{a})$	119.6(2)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	117.0(3)	$\mathrm{C}(3 \mathrm{a})-\mathrm{C}(13 \mathrm{c})-\mathrm{C}(13 \mathrm{~b})$	122.0(3)
$\mathrm{O}(3)-\mathrm{C}(3 \mathrm{a})-\mathrm{C}(4)$	117.1(2)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(21)$	122.7(3)	$\mathrm{C}(6 \mathrm{a})-\mathrm{C}(13 \mathrm{c})-\mathrm{C}(13 \mathrm{~b})$	119.4(2)
$\mathrm{O}(3)-\mathrm{C}(3 \mathrm{a})-\mathrm{C}(13 \mathrm{c})$	121.9(3)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{O}(10)$	120.3(3)	$\mathrm{C}(4)-\mathrm{C}(16)-\mathrm{O}(16)$	118.6(3)
$\mathrm{C}(4)-\mathrm{C}(3 \mathrm{a})-\mathrm{C}(13 \mathrm{c})$	121.1(3)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(10)$	115.8(3)	$\mathrm{C}(4)-\mathrm{C}(16)-\mathrm{C}(17)$	124.0(3)
$\mathrm{C}(3 \mathrm{a})-\mathrm{C}(4)-\mathrm{C}(5)$	116.7(3)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	123.8(3)	$\mathrm{O}(16)-\mathrm{C}(16)-\mathrm{C}(17)$	117.1(3)
$\mathrm{C}(3 \mathrm{a})-(4)-\mathrm{C}(16)$	123.5(3)	$\mathrm{O}(10)-\mathrm{C}(10)-\mathrm{C}(11)$	120.4(3)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	111.4(4)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(16)$	119.7(3)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(11 \mathrm{a})$	115.7(3)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(19)$	107.5(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(5)$	121.1(3)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(22)$	119.1(3)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(19)$	111.4(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	122.9 (3)	$\mathrm{C}(11 \mathrm{a})-\mathrm{C}(11)-\mathrm{C}(22)$	125.2(3)	$\mathrm{C}(11)-(\mathrm{C}(22)-\mathrm{O}(22)$	118.2(3)
$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(6)$	115.9(3)	$\mathrm{C}(7 \mathrm{~b})-\mathrm{C}(11 \mathrm{a})-\mathrm{C}(11)$	122.1(3)	$\mathrm{C}(11)-\mathrm{C}(22)-\mathrm{C}(23)$	125.4(3)
C(5)-C(6)-C(6a)	117.1(3)	$\mathrm{C}(7 \mathrm{~b})-\mathrm{C}(1 \mathrm{la})-\mathrm{O}(12)$	121.3(2)	$\mathrm{O}(22)-\mathrm{C}(22)-\mathrm{C}(23)$	116.3(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(20)$	121.0(3)	$\mathrm{C}(11)-\mathrm{C}(11 \mathrm{a})-\mathrm{O}(12)$	116.6 (3)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$111.7(4)$
$\mathrm{C}(6 \mathrm{a})-\mathrm{C}(6)-\mathrm{C}(20)$	121.8(3)	$\mathrm{C}(11 \mathrm{a})-\mathrm{O}(12)-\mathrm{C}(13)$	116.9(2)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(25)$	109.1(4)
$\mathrm{C}(6)-\mathrm{C}(6 \mathrm{a})-\mathrm{C}(13 \mathrm{c})$	123.3(3)	$\mathrm{O}(12)-\mathrm{C}(13)-\mathrm{C}(13 \mathrm{a})$	106.2(2)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(25)$	109.1(5)
$\mathrm{C}(6)-(6 \mathrm{a})-\mathrm{O}(7)$	119.7(3)	$\mathrm{O}(12)-\mathrm{C}(13)-\mathrm{C}(26)$	$103.5(3)$	$\mathrm{O}(5)-\mathrm{H}(\mathrm{OS}) \ldots \mathrm{O}(16)$	149(7)
$\mathrm{O}(7)-\mathrm{C}(6 \mathrm{a})-\mathrm{C}(13 \mathrm{c})$	117.1(3)	$\mathrm{C}(13 \mathrm{a})-\mathrm{C}(13)-\mathrm{C}(26)$	112.5(2)	$\mathrm{O}(10)-\mathrm{H}(010) . \mathrm{O}(22)$	149(7)
$\mathrm{C}(6 \mathrm{a})-\mathrm{O}(7)-\mathrm{C}(7 \mathrm{a})$	109.9(2)	$\mathrm{O}(12)-\mathrm{C}(13)-\mathrm{C}(27)$	107.6(2)	$\left.\mathrm{O}(8)-\mathrm{H}(08) \ldots \mathrm{O}(16)^{4}\right)$	161(5)
$\mathrm{O}(7)-\mathrm{C}(7 \mathrm{a})-\mathrm{C}(7 \mathrm{~b})$	109.0(2)	$\mathrm{C}(13 \mathrm{a})-\mathrm{C}(13)-\mathrm{C}(27)$	114.2(3)		
$\mathrm{O}(7)-\mathrm{C}(7 \mathrm{a})-\mathrm{C}(13 \mathrm{a})$	111.2(2)	$\mathrm{C}(26)-\mathrm{C}(13)-\mathrm{C}(27)$	111.9(3)		

${ }^{\text {a }}$) Symmetry operation $1.5-x, 0.5+y,-0.5-z$.
Acetylations. The starting material was dissolved in 1 ml of $\mathrm{Ac}_{2} \mathrm{O} /$ pyridine $1: 1$ and stirred at r.t. for 24 h for 1 and 36 h for 3 . The mixture was poured into ice $/ \mathrm{H}_{2} \mathrm{O}$ and the precipitate filtered off. The crude product was purified on silica gel (Merck; $0.063-0.2 \mathrm{~mm}$) with CHCl_{3}.

Diacetate 1a (4.2 mg) was obtained from $1(5 \mathrm{mg})$. Colorless gum, TLC (SiO_{2}, toluene/AcOEt 93 :7): $R_{\mathrm{f}} 0.20$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): 6.22(d, J=10, \mathrm{H}-\mathrm{C}(4)) ; 5.64(d, J=10, \mathrm{H}-\mathrm{C}(3)) ; 3.17\left(\right.$ sept., $\left.J=7,\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$; $2.35,2.22\left(2 s, 2 \mathrm{CH}_{3} \mathrm{COO}\right) ; 1.85\left(s, \mathrm{CH}_{3}-\mathrm{C}(6)\right) ; 1.42\left(s, 2 \mathrm{CH}_{3}-\mathrm{C}(2)\right) ; 1.14\left(d, J=7,\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$. EI-MS: 360 $\left(M^{+}\right), 318,303,275,261$ (100), 233.

Triacetate 3a was obtained from $3(5 \mathrm{mg})$ and recrystallized from hexane $/ \mathrm{Et}_{2} \mathrm{O} 1: 1$ to give 3.3 mg of white microneedles. M.p. 176-178 . TLC (SiO_{2}, toluene/AcOEt 93:7): $R_{\mathrm{f}} 0.07 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 4.4$ (br. $d, \mathrm{H}-\mathrm{C}(7 \mathrm{a})$); 3.15 (2
sept., $\left.J=7,2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 2.55(m, \mathrm{H}-\mathrm{C}(13 \mathrm{~b})) ; 2.23\left(2 s, 2 \mathrm{CH}_{3} \mathrm{COO}\right) ; 2.21\left(s, \mathrm{CH}_{3} \mathrm{COO}\right) ; 2.11(m, \mathrm{H}-\mathrm{C}(13 \mathrm{a}))$; 1.99, 1.88 ($2 s, \mathrm{CH}_{3}-\mathrm{C}(6), \mathrm{CH}_{3}-\mathrm{C}(9)$); $1.92\left(m, \mathrm{CH}_{2}(1)\right.$); 1.48, 1.43, $1.41\left(3 s, 2 \mathrm{CH}_{3}-\mathrm{C}(2), 2 \mathrm{CH}_{3}-\mathrm{C}(13)\right) ; 1.18$, 1.15, $1.12\left(\mathrm{~m}, 2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$. EI-MS: $678\left(\mathrm{M}^{+-}\right), 635,593,261,233$.

Acidic Dimerization. At r.t. $1(4 \mathrm{mg})$ in 8 ml of $\mathrm{MeOH} / 1 \mathrm{~N} \mathrm{HCl} 1: 1$ was stirred for 6 h and allowed to stand overnight. The mixture was evaporated to dryness, filtered through a small column of SiO_{2} (Merck; 63-200 $\mu \mathrm{m}$) with $\mathrm{CHCl}_{3} /$ hexane/ MeOH $80: 8: 0.3$ and the filtrate subjected to semi-prep. HPLC on $R P 18$ with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ $94: 6$ to afford 2.1 mg of 3 . Crystallisation from hexane $/ \mathrm{Et}_{2} \mathrm{O} 1: 1$ gave pale yellow crystals of 3 , with identical retention time on RP18, m.p., UV, EI-MS, and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ as 3 from Hypericum revolutum.

The Swiss National Science Foundation provided financial support for this work. H. St.-E. wishes to thank the Swiss National Science Foundation for an equipment grant (No. 2.372-0.84).

REFERENCES

[1] E.M. Osborne, Brit. J. Exp. Biol. 1943, 24, 227.
[2] F. Neuwald, U. Hagenstrom, Arch. Pharm. (Weinheim, Ger.) 1954, 287, 439.
[3] K. N. Gaind, T. N. Ganjoo, Indian J. Pharm. 1959, 21, 172.
[4] F.K. Fitzpatrick, Antibiot. Chemother. 1954, IV, 528.
[5] M. L. Dhar, B. N. Dhawan, C. R. Prasad, R. P. Rastogi, K. K. Singh, J. S. Tandon, Indian J. Exp. Biol. 1974, 12, 512.
[6] R. L. Khosa, N. Bhatia, J. Sci. Res. Plant Med. 1982, 3, 49.
[7] A.I. Gurevich, V. N. Dobryrin, M. N. Kolosov, S.A. Popravko, I. D. Ryabova, B. K. Cheenov, N. A. Derbentzera, B. E. Aizenman, A.D. Garagulya, Antibiotiki (Moscow) 1971, 16, 510.
[8] N.S. Bystrov, V. N. Dobrynin, M. N. Kolosov, S. A. Popravko, B. K. Chernov, Bioorg. Khim. 1978, 4, 791.
[9] W. L. Parker, J. Johnson, J. Am. Chem. Soc. 1968, 90, 4716.
[10] W.L. Parker, J. J. Flynn, F.P. Boer, J. Am. Chem. Soc. 1968, 90, 4723.
[11] H.L. Taylor, R. M. Brooker, Lloydia 1969, 32, 217.
[12] K. Ishiguro, M. Yamaki, S. Takagi, Y. Yamagata, K. Tomita, J. Chem. Soc., Chem. Commun. 1985, 26.
[13] K. Ishiguro, M. Yamaki, K. Kashihara, S. Takagi, Planta Med. 1986, 288.
[14] A. L. Homans, A. Fuchs, J. Chromatogr. 1970, 51, 327.
[15] A. Arnone, G. Cardillo, L. Merlini, R. Mondelli, Tetrahedron Lett. 1967, 43, 4201.
[16] L. A. Decosterd, A. C. Dorsaz, K. Hostettmann, J. Chromatogr. 1987, in press.
[17] P. Godin, Nature (London) 1954, 174, 134.
[18] F. M. Dean, 'Naturally Occurring Oxygen Ring Compounds’, Butterworths, London, 1963, p. 221.
[19] G. M. Sheldrick, SHELX-76, Program for Crystal Structure Determination, University of Cambridge, England, 1976.
[20] 'International Tables for X-Ray Crystallography', Kynoch Press, Birmingham, England, 1974, Vol. IV.
[21] C. K. Johnson, ORTEP-II. Report 5138, Oak Ridge National Laboratory, Oak Ridge, Tenessee, USA.

[^0]: ${ }^{1}$) Presented in part at the $34^{\text {th }}$ Annual Congress on Medicinal Plant Research, Hamburg, FRG, 22-27 September, 1986.

[^1]: The EI-MS of both 1 and 2 showed a similar fragmentation pattern, with an easy loss of a CH_{3} group from M^{+}characteristic for 2,2 -dimethyl- $2 H-1$-benzopyrans to give the base-peak ion [9]. The $5-\mathrm{OH}$ substitution of $\mathbf{1}$ was confirmed by comparison of its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data with those of its acetylation product 1a. Acetylation of $\mathrm{OH}-\mathrm{C}(5)$ of 2 H -1-benzopyran-5-ol is known to cause a marked diamagnetic shift of $\mathrm{H}-\mathrm{C}(4)$ and a slight paramagnetic shift of $\mathrm{H}-\mathrm{C}(3)$ in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum [15]. For 1 , the $d(J=10 \mathrm{~Hz})$ of $\mathrm{H}-\mathrm{C}(4)$ and $\mathrm{H}-\mathrm{C}(3)$ appear at 6.56 and 5.44 ppm , respectively, whereas for 1 a they are centred at $6.22(\Delta \delta=-0.34 \mathrm{ppm})$ and 5.64 ppm ($\Delta \delta=+0.2 \mathrm{ppm}$), respectively. The rest of the substitution pattern was deduced from the observation that the sept. of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCO}-\mathrm{C}(8)$ of 1 appears at relatively low field (3.87 ppm). After acetylation, the signal appears at 3.17 ppm . This phenomenon (also observed in compound 3, the structure of which was established by X-ray analysis) suggested a deshielding by the O -atom of the benzopyran ring and confirmed position 8 as the location of the isobutyryl group in 1. The signal of $\mathrm{OH}-\mathrm{C}(7)$ appears at 14.1 ppm , due to a strong H -bond with the carbonyl group of the isobutyryl moiety. The ${ }^{13} \mathrm{C}$-NMR spectrum of 1 shows a signal for $\mathrm{CH}_{3}-\mathrm{C}(6)$ at high field (7.l ppm), confirming the position of the CH_{3} group between two aromatic OH groups.

 The structure of the higher homologue 2 was deduced by comparison of its ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}$-NMR spectra with those of $\mathbf{1}$. The signal of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CO}-\mathrm{C}(8)$ appears as a sext. at 3.77 ppm , and the signals of the $2 \mathrm{CH}_{3}$ groups of the acyl chain appear as a $d(J=6.5 \mathrm{~Hz})$ and a $t(J=7.5 \mathrm{~Hz})$, respectively, at 1.16 and 0.90 ppm . The signals of the $2 \mathrm{CH}_{3}-\mathrm{C}(2)$ are slightly shifted and give rise to $2 s$ at 1.48 and 1.47 ppm . Two additional signals are also present in the ${ }^{1} \mathrm{H}$-NMR spectrum of 2, appearing as $2 m$ at 1.85 and 1.44 ppm (together 2 H), corresponding to the CH_{2} group of the 2-methylbutyryl moiety.

